58 research outputs found

    A New Paradigm in Split Manufacturing: Lock the FEOL, Unlock at the BEOL

    Full text link
    Split manufacturing was introduced as an effective countermeasure against hardware-level threats such as IP piracy, overbuilding, and insertion of hardware Trojans. Nevertheless, the security promise of split manufacturing has been challenged by various attacks, which exploit the well-known working principles of physical design tools to infer the missing BEOL interconnects. In this work, we advocate a new paradigm to enhance the security for split manufacturing. Based on Kerckhoff's principle, we protect the FEOL layout in a formal and secure manner, by embedding keys. These keys are purposefully implemented and routed through the BEOL in such a way that they become indecipherable to the state-of-the-art FEOL-centric attacks. We provide our secure physical design flow to the community. We also define the security of split manufacturing formally and provide the associated proofs. At the same time, our technique is competitive with current schemes in terms of layout overhead, especially for practical, large-scale designs (ITC'99 benchmarks).Comment: DATE 2019 (https://www.date-conference.com/conference/session/4.5

    Graph Neural Networks for Hardware Vulnerability Analysis -- Can you Trust your GNN?

    Full text link
    The participation of third-party entities in the globalized semiconductor supply chain introduces potential security vulnerabilities, such as intellectual property piracy and hardware Trojan (HT) insertion. Graph neural networks (GNNs) have been employed to address various hardware security threats, owing to their superior performance on graph-structured data, such as circuits. However, GNNs are also susceptible to attacks. This work examines the use of GNNs for detecting hardware threats like HTs and their vulnerability to attacks. We present BadGNN, a backdoor attack on GNNs that can hide HTs and evade detection with a 100% success rate through minor circuit perturbations. Our findings highlight the need for further investigation into the security and robustness of GNNs before they can be safely used in security-critical applications.Comment: Will be presented at 2023 IEEE VLSI Test Symposium (VTS

    3D Integration: Another Dimension Toward Hardware Security

    Full text link
    We review threats and selected schemes concerning hardware security at design and manufacturing time as well as at runtime. We find that 3D integration can serve well to enhance the resilience of different hardware security schemes, but it also requires thoughtful use of the options provided by the umbrella term of 3D integration. Toward enforcing security at runtime, we envision secure 2.5D system-level integration of untrusted chips and "all around" shielding for 3D ICs.Comment: IEEE IOLTS 201

    CAS-Unlock: Unlocking CAS-Lock without Access to a Reverse-Engineered Netlist

    Get PDF
    CAS-Lock (cascaded locking) is a SAT-resilient locking technique, which can simultaneously thwart SAT and bypass attack, while maintaining non-trivial output corruptibility. Despite all of its theoretical guarantees, in this report we expose a serious flaw in its design that can be exploited to break CAS-Lock. Further, this attack neither requires access to a reverse-engineered netlist, nor it requires a working oracle with the correct key loaded onto the chip\u27s memory. We demonstrate that we can activate any CAS-Locked IC without knowing the secret key

    A novel scan architecture for power-efficient, rapid test

    Full text link
    Scan-based testing methodologies remedy the testability problem of sequential circuits; yet they suffer from prolonged test time and excessive test power due to numerous shift op-erations. The high density of the unspecified bits in test data enables the utilization of the test response data captured in the scan chain for the generation of the subsequent test stimulus, thus reducing both test time and test data volume. The pro-posed scan-based test scheme accesses only a subset of scan cells for loading the subsequent test stimulus while freezing the remaining scan cells with the response data captured, thus decreasing the scan chain transitions during shift operations. The experimental results confirm the significant reductions in test application time, test data volume and test power achieved by the proposed scan-based testing methodology.
    • …
    corecore